Abstract View

Author(s): Nikita Mukherjee, Gargi Ray Chaudhuri

Email(s): raychaudhurigargi@gmail.com

Address:

    Department of Physiology, Lenora Institute of Dental Sciences, Rajanagaram, Rajamahendravaram, Andhra Pradesh, India 533101
    Department of Physiotherapy, Nopany Institute of Health care Studies, Kolkata, India 700006

Published In:   Volume - 2,      Issue - 2,     Year - 2025

DOI: 10.5281/zenodo.17788531  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Sleep architecture undergoes significant changes with aging, marked by reduced slow-wave sleep, increased fragmentation, and diminished sleep efficiency. These alterations are closely linked to neurochemical shifts in key receptor systems—adenosine, orexin, and GABAergic—that regulate sleep onset, maintenance, and transitions. Understanding receptor-level modulation offers a promising way for targeted interventions in age-related sleep disturbances. This review synthesizes current literature on the roles of adenosine A1/A2A, orexin OX1R/OX2R, and GABA_A receptor subtypes in sleep regulation. It examines age-related changes in receptor expression, signaling pathways, and neurophysiological interactions. Comparative analysis highlights receptor crosstalk and compensatory mechanisms in aging brains, with emphasis on translational and therapeutic implications. Aging is associated with reduced adenosine receptor sensitivity, orexinergic tone decline, and diminished GABAergic inhibition—each contributing to disrupted sleep architecture. Crosstalk among these systems reveals synergistic and antagonistic dynamics that influence sleep-wake stability. Emerging receptor-targeted therapies, including dual orexin receptor antagonists and subtype-selective GABA_A modulators, show promise in improving sleep quality in elderly populations. Non-pharmacological interventions such as neurofeedback and light therapy further support receptor plasticity and circadian alignment. Receptor-level modulation provides a mechanistic framework for understanding sleep deterioration in aging. Targeting adenosine, orexin, and GABAergic systems offers novel strategies to restore sleep architecture and mitigate cognitive and metabolic consequences of sleep disruption. Future research should prioritize personalized receptor profiling and integrative therapeutic approaches to enhance sleep health in older adults.

Cite this article:
Mukherjee, N., & Chaudhuri, G. R. Receptor-Level Modulation of Sleep Architecture: The Role of Adenosine, Orexin, and GABAergic Systems in Aging Brains. Probecell Sci. 2025; 2(2): 1–13. https://doi.org/10.5281/zenodo.17788532DOI: https://doi.org/10.5281/zenodo.17788531


[1]   Patel AK, Reddy V, Shumway KR, et al. Physiology, Sleep Stages. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025.

[2]   De Longis E, Kassis A, Rémond-Derbez N, Thota R, Darimont C, Donato-Capel L, Hudry J. Cognitive benefits of sleep: a narrative review to explore the relevance of glucose regulation. Sleep Adv. 2024 Dec 18;6(1):zpae095. doi: 10.1093/sleepadvances/zpae095.

[3]   Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci. 2024 Aug 5;16:1428244. doi: 10.3389/fnagi.2024.1428244.

[4]   Bjorness TE, Greene RW. Adenosine and sleep. Curr Neuropharmacol. 2009 Sep;7(3):238-45. doi: 10.2174/157015909789152182.

[5]   Reichert CF, Deboer T, Landolt HP. Adenosine, caffeine, and sleep-wake regulation: state of the science and perspectives. J Sleep Res. 2022 Aug;31(4):e13597. doi: 10.1111/jsr.13597.

[6]   Pieramico V, Esposito R, Cesinaro S, Frazzini V, Sensi SL. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals. Front Syst Neurosci. 2014 Sep 2;8:153. doi: 10.3389/fnsys.2014.00153.

[7]   Camberos-Barraza, J., Camacho-Zamora, A., Bátiz-Beltrán, J. C., Osuna-Ramos, J. F., Rábago-Monzón, Á. R., Valdez-Flores, M. A., Angulo-Rojo, C. E., Guadrón-Llanos, A. M., Picos-Cárdenas, V. J., Calderón-Zamora, L., Norzagaray-Valenzuela, C. D., Cárdenas-Torres, F. I., & De la Herrán-Arita, A. K. Sleep, Glial Function, and the Endocannabinoid System: Implications for Neuroinflammation and Sleep Disorders. International Journal of Molecular Sciences, 2024;25(6), 3160.

[8]   Lavoie, C.J., Zeidler, M.R. & Martin, J.L. Sleep and aging. Sleep Science Practice, 2018; 2, 3:12-23.

[9]   Zhao W, Van Someren EJW, Li C, Chen X, Gui W, Tian Y, Liu Y, Lei X. EEG spectral analysis in insomnia disorder: A systematic review and meta-analysis. Sleep Med Rev. 2021 Oct;59:101457. doi: 10.1016/j.smrv.2021.101457

[10]          iper DC, Upton N, Smith MI, Hunter AJ. The novel brain neuropeptide, orexin-A, modulates the sleep-wake cycle of rats. Eur J Neurosci. 2000 Feb;12(2):726-30. doi: 10.1046/j.1460-9568.2000.00919.x.

[11]          Rahman SA, Gathungu RM, Marur VR, St Hilaire MA, Scheuermaier K, Belenky M, Struble JS, Czeisler CA, Lockley SW, Klerman EB, Duffy JF, Kristal BS. Age-related changes in circadian regulation of the human plasma lipidome. Commun Biol. 2023 Jul 20;6(1):756. doi: 10.1038/s42003-023-05102-8.

[12]          Eiser AS. Sleep-Related Dissociative Disorders. Sleep Med Clin. 2024 Mar;19(1):159-167. doi: 10.1016/j.jsmc.2023.10.003.

[13]          Wolff CA, Gutierrez-Monreal MA, Meng L, Zhang X, Douma LG, Costello HM, Douglas CM, Ebrahimi E, Pham A, Oliveira AC, Fu C, Nguyen A, Alava BR, Hesketh SJ, Morris AR, Endale MM, Crislip GR, Cheng KY, Schroder EA, Delisle BP, Bryant AJ, Gumz ML, Huo Z, Liu AC, Esser KA. Defining the age-dependent and tissue-specific circadian transcriptome in male mice. Cell Rep. 2023 Jan 31;42(1):111982. doi: 10.1016/j.celrep.2022.111982. 

[14]          Baird B, Aparicio MK, Alauddin T, Riedner B, Boly M, Tononi G. Episodic thought distinguishes spontaneous cognition in waking from REM and NREM sleep. Conscious Cogn. 2022 Jan;97:103247. doi: 10.1016/j.concog.2021.103247.

[15]          Sang D, Lin K, Yang Y, Ran G, Li B, Chen C, Li Q, Ma Y, Lu L, Cui XY, Liu Z, Lv SQ, Luo M, Liu Q, Li Y, Zhang EE. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell. 2023 Dec 7;186(25):5500-5516.e21. doi: 10.1016/j.cell.2023.10.025. 

[16]          Kreider MS, Winokur A, Pack AI, Fishman AP. Reduction of thyrotropin-releasing hormone concentrations in central nervous system of African lungfish during estivation. Gen Comp Endocrinol. 1990 Mar;77(3):435-41. doi: 10.1016/0016-6480(90)90234-d.

[17]          Xu H, Qiu Q, Hu P, Hoxha K, Jang E, O'Reilly M, Kim C, He Z, Marotta N, Changolkar L, Zhang B, Wu H, Schellenberg GD, Kraemer B, Luk KC, Lee EB, Trojanowski JQ, Brunden KR, Lee VM. MSUT2 regulates tau spreading via adenosinergic signaling mediated ASAP1 pathway in neurons. Acta Neuropathol. 2024 Mar 12;147(1):55. doi: 10.1007/s00401-024-02703-3. 

[18]          Facco FL, Wolsk J, Patel SR, Hubel C, Gallaher M, Cashmere JD, Wisniewski S. A trial of positive airway pressure for the treatment of sleep apnea in pregnancy. Am J Obstet Gynecol MFM. 2023 Mar;5(3):100840. doi: 10.1016/j.ajogmf.2022.100840.

[19]          Falup-Pecurariu C, Muntean ML, Ungureanu L, Murasan I, Popławska-Domaszewicz K, Chaudhuri KR, Diaconu S. Pharmacological and non-pharmacological management of sleep disturbances in Parkinson's disease: if when and how. Expert Opin Pharmacother. 2024 Nov;25(16):2135-2149. doi: 10.1080/14656566.2024.2422004. 

[20]          Yang Q, Cai Y, Ma Q, Xiong A, Xu P, Zhang Z, Xu J, Zhou Y, Liu Z, Zhao D, Asara J, Li W, Shi H, Caldwell RB, Sodhi A, Huo Y. Inactivation of adenosine receptor 2A suppresses endothelial-to-mesenchymal transition and inhibits subretinal fibrosis in mice. Sci Transl Med. 2024 Mar 6;16(737):eadk3868. doi: 10.1126/scitranslmed.adk3868. 

[21]          Cavalu S, Saber S, Hamad RS, Abdel-Reheim MA, Elmorsy EA, Youssef ME. Orexins in apoptosis: a dual regulatory role. Front Cell Neurosci. 2024 Apr 12;18:1336145. doi: 10.3389/fncel.2024.1336145. 

[22]          Imamura K, Akagi KI, Miyanoiri Y, Tsujimoto H, Hirokawa T, Ashida H, Murakami K, Inoue A, Suno R, Ikegami T, Sekiyama N, Iwata S, Kobayashi T, Tochio H. Interaction modes of human orexin 2 receptor with selective and nonselective antagonists studied by NMR spectroscopy. Structure. 2024 Mar 7;32(3):352-361.e5. doi: 10.1016/j.str.2023.12.008. 

[23]          Wang Q, Cao F, Wu Y. Orexinergic System in Neurodegenerative Diseases. Front Aging Neurosci. 2021 Aug 17;13:713201. doi: 10.3389/fnagi.2021.713201.

[24]          Branch AF, Navidi W, Tabuchi S, Terao A, Yamanaka A, Scammell TE, Diniz Behn C. Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness. Sleep. 2016 Feb 1;39(2):369-77. doi: 10.5665/sleep.5446.

[25]          Rocha RB, Bomtempo FF, Nager GB, Cenci GI, Telles JPM. Dual orexin receptor antagonists for the treatment of insomnia: systematic review and network meta-analysis. Arq Neuropsiquiatr. 2023 May;81(5):475-483. doi: 10.1055/s-0043-1768667. 

[26]          Li F, Yan Y, Zheng L, Wang C, Guan X, Hong S, Guo H. Frailty and its combined effects with lifestyle factors on cognitive function: a cross-sectional study. BMC Geriatr. 2023 Feb 6;23(1):79. doi: 10.1186/s12877-023-03761-0.

[27]          Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci. 2023 Aug 22;17:1230428. doi: 10.3389/fnins.2023.1230428. 

[28]          Ghit A, Assal D, Al-Shami AS, Hussein DEE. GABAA receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol. 2021 Aug 21;19(1):123. doi: 10.1186/s43141-021-00224-0.

[29]          Xiang T, Liao J, Cai Y, Fan M, Li C, Zhang X, Li H, Chen Y, Pan J. Impairment of GABA inhibition in insomnia disorders: Evidence from the peripheral blood system. Front Psychiatry. 2023 Feb 9;14:1134434. doi: 10.3389/fpsyt.2023.1134434.

[30]          Neumann E, Rudolph U, Knutson DE, Li G, Cook JM, Hentschke H, Antkowiak B, Drexler B. Zolpidem Activation of Alpha 1-Containing GABAA Receptors Selectively Inhibits High Frequency Action Potential Firing of Cortical Neurons. Front Pharmacol. 2019 Jan 9;9:1523. doi: 10.3389/fphar.2018.01523. 

[31]          McCall WV. Sleep in the Elderly: Burden, Diagnosis, and Treatment. Prim Care Companion J Clin Psychiatry. 2004;6(1):9-20. doi: 10.4088/pcc.v06n0104.

[32]          Wang W, Fu W, Zhu H, Ma J, Zhang J, Qi J. Progress in GABAA receptor agonists for insomnia disorder. Front Pharmacol. 2024 Nov 5;15:1432726. doi: 10.3389/fphar.2024.1432726. 

[33]          Gottesmann C. GABA mechanisms and sleep. Neuroscience. 2002;111(2):231-9. doi: 10.1016/s0306-4522(02)00034-9.

[34]          Joiner WJ. The Neurobiological Basis of Sleep and Sleep Disorders. Physiology (Bethesda). 2018 Sep 1;33(5):317-327. doi: 10.1152/physiol.00013.2018.

[35]          De Luca R, Nardone S, Grace KP, Venner A, Cristofolini M, Bandaru SS, Sohn LT, Kong D, Mochizuki T, Viberti B, Zhu L, Zito A, Scammell TE, Saper CB, Lowell BB, Fuller PM, Arrigoni E. Orexin neurons inhibit sleep to promote arousal. Nat Commun. 2022 Jul 18;13(1):4163. doi: 10.1038/s41467-022-31591-y.

[36]          Kumar S, Rai S, Hsieh KC, McGinty D, Alam MN, Szymusiak R. Adenosine A(2A) receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2013 Jul 1;305(1):R31-41. doi: 10.1152/ajpregu.00402.2012. 

[37]          Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci. 2006 Aug 2;26(31):8092-100. doi: 10.1523/JNEUROSCI.2181-06.2006. 

[38]          Hassan M, Adotevi NK, Leitch B. Altered GABAA Receptor Expression in the Primary Somatosensory Cortex of a Mouse Model of Genetic Absence Epilepsy. Int J Mol Sci. 2022 Dec 10;23(24):15685. doi: 10.3390/ijms232415685.

[39]          Tsuboi D, Nagai T, Yoshimoto J, Kaibuchi K. Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling. Front Mol Neurosci. 2024 Mar 7;17:1376762. doi: 10.3389/fnmol.2024.1376762.

[40]          Álamo C, Sáiz Ruiz J, Zaragozá Arnáez C. Orexinergic Receptor Antagonists as a New Therapeutic Target to Overcome Limitations of Current Pharmacological Treatment of Insomnia Disorder. Actas Esp Psiquiatr. 2024 Apr;52(2):172-182. doi: 10.62641/aep.v52i2.1659.

[41]          Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol. 2016;56:361-83. doi: 10.1146/annurev-pharmtox-010814-124742.

[42]          Rémi J, Pollmächer T, Spiegelhalder K, Trenkwalder C, Young P. Sleep-Related Disorders in Neurology and Psychiatry. Dtsch Arztebl Int. 2019 Oct 11;116(41):681-688. doi: 10.3238/arztebl.2019.0681.

[43]          Gu HJ, Lee OS. Effects of Non-Pharmacological Sleep Interventions in Older Adults: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2023 Feb 10;20(4):3101. doi: 10.3390/ijerph20043101. 

[44]          Voicu V, Toader C, Șerban M, Covache-Busuioc RA, Ciurea AV. Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS. Biomedicines. 2025 Aug 20;13(8):2025. doi: 10.3390/biomedicines13082025.

[45]          Simmonds E, Levine KS, Han J, Iwaki H, Koretsky MJ, Kuznetsov N, Faghri F, Solsberg CW, Schuh A, Jones L, Bandres-Ciga S, Blauwendraat C, Singleton A, Escott-Price V, Leonard HL, Nalls MA. Sleep disturbances as risk factors for neurodegeneration later in life. medRxiv [Preprint]. 2023 Nov 9:2023.11.08.23298037. doi: 10.1101/2023.11.08.23298037.

[46]          Xia L, Liu H, Ren J. A review of symptom, pathogenesis and treatment characteristics of the elderly with chronic insomnia. Medicine (Baltimore). 2025 Jan 31;104(5):e41346. doi: 10.1097/MD.0000000000041346.

[47]          Scammell TE, Winrow CJ. Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2011;51:243-66. doi: 10.1146/annurev-pharmtox-010510-100528.

[48]          Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci. 2018 Jun 28;11:220. doi: 10.3389/fnmol.2018.00220.

[49]          Varinthra P, Anwar SNMN, Shih SC, Liu IY. The role of the GABAergic system on insomnia. Tzu Chi Med J. 2024 Mar 26;36(2):103-109. doi: 10.4103/tcmj.tcmj_243_23.

[50]          Uygun DS, Yang C, Tilli ER, Katsuki F, Hodges EL, McKenna JT, McNally JM, Brown RE, Basheer R. Knockdown of GABAA alpha3 subunits on thalamic reticular neurons enhances deep sleep in mice. Nat Commun. 2022 Apr 26;13(1):2246. doi: 10.1038/s41467-022-29852-x.

[51]          Reichert, C.F.; Maire, M.; Schmidt, C.; Cajochen, C. Sleep-Wake Regulation and Its Impact on Working Memory Performance: The Role of Adenosine. Biology 2016, 5, 11.

[52]          Thakkar MM. Histamine in the regulation of wakefulness. Sleep Med Rev. 2011 Feb;15(1):65-74. doi: 10.1016/j.smrv.2010.06.004.

[53]          Berridge CW. Noradrenergic modulation of arousal. Brain Res Rev. 2008 Jun;58(1):1-17. doi: 10.1016/j.brainresrev.2007.10.013.

[54]          Targa ADS, Noseda ACD, Rodrigues LS, Aurich MF, Lima MMS. REM sleep deprivation and dopaminergic D2 receptors modulation increase recognition memory in an animal model of Parkinson's disease. Behav Brain Res. 2018 Feb 26;339:239-248. doi: 10.1016/j.bbr.2017.11.008. 

[55]          Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101-15. doi: 10.2174/1570159x13666150716165726.

[56]          Mackiewicz M, Nikonova EV, Zimmermann JE, Romer MA, Cater J, Galante RJ, Pack AI. Age-related changes in adenosine metabolic enzymes in sleep/wake regulatory areas of the brain. Neurobiol Aging. 2006 Feb;27(2):351-60. doi: 10.1016/j.neurobiolaging.2005.01.015.

[57]          Ragsdale SM, Radovich JM, Coiduras II, McCall WV, Grant SC, Lee C, Wilber A. Dual orexin receptor antagonists as promising therapeutics for Alzheimer's disease. NPJ Biol Timing Sleep. 2025;2(1):11. doi: 10.1038/s44323-025-00025-5.

[58]          Pereira AC, Mao X, Jiang CS, Kang G, Milrad S, McEwen BS, Krieger AC, Shungu DC. Dorsolateral prefrontal cortex GABA deficit in older adults with sleep-disordered breathing. Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10250-10255. doi: 10.1073/pnas.1700177114. 

[59]          Anghel L, Baroiu L, Popazu CR, Pătraș D, Fotea S, Nechifor A, Ciubara A, Nechita L, Mușat CL, Stefanopol IA, Tatu AL, Ciubara AB. Benefits and adverse events of melatonin use in the elderly (Review). Exp Ther Med. 2022 Mar;23(3):219. doi: 10.3892/etm.2022.11142.

[60]          Cojuc-Konigsberg G, Schoo C. Inappropriate Medication in the Geriatric Population. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025 Jan

Related Images:



Recent Images



Receptor-Level Modulation of Sleep Architecture: The Role of Adenosine, Orexin, and GABAergic Systems in Aging Brains
Recent Advancement in Understanding the Interaction Between Probiotics Prebiotics and the Gut Microbiota
Integrating Clinical Features with Mucosal Biopsy Findings for Precise Diagnosis of Malabsorption Syndromes
Gender Differences in Nutritional Status During Early Adolescence: A Comparative Study in Mohanpur Block, Paschim Medinipur, West Bengal
Association Between Junk Food Consumption Patterns and The Severity of Premenstrual Syndrome
Recent Progress on Acrylamide-Induced Programmed Cell Death (PCD) in Safety Drug Development
Bilayer Tablets in Controlled Drug Delivery: A Comprehensive Review of Modern Formulation Strategies
Sustainable Approaches to Heavy Metal Remediation in Aquatic Systems: Challenges and Innovations
Recent Advancement in Drug Development for Intranasal Drug Delivery System
Management and Treatment of SARS-CoV-induced thrombotic events

Tags


Recomonded Articles: